Diplomsko delo višješolskega strokovnega študija
Program: Logistično inženirstvo
Modul: Cestni promet

MOTORJI Z NOTRANJIM IZGOREVANJEM

Mentor: mag. Janez Blaž
Kandidat: Romeo Cah
Lektorica: Bojana Samarin, univ. dipl. slov.
ZAHVALA

Zahvaljujem se mentorju, mag. Janezu Blažu, ki me je usmerjal z nasveti pri pisanju diplomske naloge.

Hvala tudi mojim domačim in ostalim prijateljem, ki so mi stali ob strani in me podpirali pri študiju.

Zahvaljujem se tudi lektorici Bojani Samarin, prof., ki je lektorirala mojo diplomsko nalogo.

Posebna zahvala gre tudi vodstvu AP Ljubljana, ki mi je plačalo študij, in g. Jevševarju, ki mi je prilagajal razpored službe v času študija.
IZJAVA

»Študent Romeo Cah izjavljam, da sem avtor tega diplomskega dela, ki sem ga napisal pod mentorstvom g. Janeza Blaža.«

»Skladno s 1. odstavkom 21. člena Zakona o avtorski in sorodnih pravicah dovoljujem objavo tega diplomskega dela na spletni strani šole.«

Dne _____________ Podpis: ___________________________
POVZETEK

V diplomski nalogi bomo predstavili predvsem dizelske, otto in wanklev motorje z notranjim izgorevanjem, ki so se uporabljali in se uporabljajo še danes. Pri nabavi vozila je zelo pomembno, kakšen motor ima vozilo, koliko onesnaţuje okolje in ljudi, oz. katere ekološke norme izpolnjuje ter koliko je gospodaren oz. ekonomičen pri porabi goriva in ob rednem vzdrţevanju. Poudarek smo dali predvsem motorjem cestnih vozil, saj je teh motorjev največ, saj se uporabljajo v osebnih in ostalih vozilih.

KLJUČNE BESEDE

➢ Takt
➢ Sesanje
➢ Kompresija
➢ Delo
➢ Izpuh
➢ EURO STANDARD

ABSTRACT

In this thesis we present mainly diesel, otto and wanklev internal combustion engines, which have been used and are still in use today. When purchasing a vehicle is very important, what engine the vehicle, how much pollution and people, or. which improves the environmental norms, and how much it cost or. economical fuel consumption and scheduled maintenance. I put the emphasis mainly on the engines of road vehicles, as these engines is the most that can be used in cars and other vehicles.

KEYWORDS

➢ Stroke
➢ Vacuuming
➢ Compression
➢ Work
➢ Exhaust
➢ EURO STANDARD
KAZALO

1 UVOD ... 1
 1.1 PRESTAVITEV PROBLEMA ... 1
 1.2 PRESTAVITEV OKOLJA .. 1
 1.3 PREDPPOSTAVKE IN OMEJITVE .. 1
 1.4 METODE DELA .. 1

2 MOTOR Z NOTRANJIM IZGOREVANJEM .. 2
 2.1 ZGODOVINA RAZVOJA MNZ ... 2
 2.1 SPLOŠNO O MNZ .. 2

3 VRSTE MOTORJEV .. 4
 3.1 VRSTE MNZ PO NAČINU VŽIGA ... 4
 3.1.1 OTTOV MOTOR (MNZ) ... 5
 3.1.2 DIESEL MOTOR (MNZ) ... 6
 3.1.3 WANKLOV MOTOR (MNZ) ... 6
 3.2 VRSTE MNZ PO NAČINU TAKTOV .. 8
 3.2.1 ŠTIRITAKTNJI MOTOR ... 8
 3.2.2 DVOTAKTNJI MOTOR ... 12
 3.2.3 ŠTIRITAKTNJI MOTOR (WANKLOV) ... 14
 3.3 VRSTE MNZ GLEDE NA NAČIN HLAJENJA ... 15
 3.4 VRSTE MNZ GLEDE NA GIBANJE BATA ... 16
 3.5 VRSTE MNZ GLEDE NA RAZPORED VALJEV .. 17
 3.6 VRSTE MNZ GLEDE MAZANJA ... 18
 3.7 ANALIZA MOČI IN NAVORA MNZ .. 19

4 POGONSKA GORIVA MOTORJEV(MNZ) .. 22
 4.1 BENČIN .. 22
 4.2 DIZEL ... 23
 4.3 BIO DIZEL ... 24

5 IZPUŠNI PLINI MNZ .. 26
 5.1 KATALIZATOR .. 27
 5.2 SCR-TEHNOLOGIJA .. 29
 5.3 EGR-TEHNOLOGIJA .. 31

6 ZAKONODAJA IN EURO STANDARD ... 34
 6.1 DIREKTIVA EU .. 34
 6.2 EURO STANDARD .. 35

7 PRIHODNOST MNZ .. 38
 7.1 CCS – KOMBINIRAN SISTEM IZGOREVANJA .. 38
 7.2 DIESOTTO – DIZEL BENČINSKI MOTOR .. 39

8 ZAKLJUČEK ... 41
LITERATURA IN VIRI .. 43
PRILOGE ... 44
KAZALO SLIK .. 45
KAZALO TABEL .. 45
POJMOVNIK ... 45
KRATICE IN AKRONIMI .. 46
1 UVOD

1.1 PREDSTAVITEV PROBLEMA

Vozilo je danes zelo pomembno prevozno sredstvo, brez katerega si današnjega življenja ne moremo predstavljati. Da se vozilo lahko premika, potrebuje tudi motor. V diplomski nalogi bomo predstavili Diesel, Otto in Wanklov motor, vpliv teh motorjev na okolje in zdravje ljudi, standarde glede izdelave in varovanja okolja in zakonodajo, ki opredeljuje njihovo uporabo.

1.2 PREDSTAVITEV OKOLJA

Predstavili bomo motorje (MNZ) vozil v cestnem prometu, to je v okolju, v katerem živimo, v katerem uporabljamo vozila z motorji (MNZ).

1.3 PREDPOSTAVKE IN OMEJITVE

Opremljali smo se predvsem na motorje cestnih vozil, saj izhajamo iz predpostavke, da se jih številčno najbolj uporablja in posledično tudi najbolj onesnažujejo okolje, kar vpliva tudi na zdravje ljudi (hrup, izpušni plini ...)

1.4 METODE DELA

Metode dela, ki smo jih uporabili, so bile: komparativne metode (metoda primerjanja in primerjav) in metode diskripcije (metoda opisovanja posameznih pojavov).
2 MOTOR Z NOTRANJIM IZGOREVANJEM

2.1 ZGODOVINA RAZVOJA MNZ

2.2 SPLOŠNO O MNZ

Delovanje MNZ poteka v več korakih, imenovanih takti. Plinski delovni krožni proces, ki je temelj delovanja MNZ, obsega zaporedje: stiskanje delovne snovi, segrevanje, raztegovanje in vračanje delovne snovi na izhodiščno stanje. Delovna snov je v vseh primerih zrak s primešanim gorivom. Pri MNZ se prvi trije procesi opravijo v valju, zadnji pa je namišljen proces ohlajanja delovne snovi, ki se opravi v atmosferi. MNZ sprejema toploto, ki nastane z zgorevanjem, odpadno toploto pa odda v okolico z izpuhom dimnih plinov.

Temperature delovne snovi so višje kot temperature stene valja. Kljub visokim temperaturam in visokim tlakom so trdnostni problemi pri MNZ manjši, saj je mogoče stene valjev hladiti z vodo ali okoliškim zrakom.

Višje temperature delovne snovi pa pomenijo boljši izkoristek MNZ.
Slika 1: Štiri taktni motor osebnega vozila

Vir: www.wikipedia.org/wiki/Motor z notranjim zgorevanjem
3 VRSTE MOTORJEV

Danes obstaja cela vrsta konstrukcijskih izvedb batnih motorjev z notranjim zgorevanjem, zato jih zaradi preglednosti razvrščamo po različnih kriterijih:

- po načinu vžiga,
- številu taktov,
- po vrsti hlajenja,
- glede na gibanje bata,
- glede na razpored valjev,
- načinu mazanja (dvotaktni, štiritaktni motor).

3.1 VRSTE MNZ PO NAČINU VŽIGA

Glede na način dovajanja goriva v valj ločimo:

- Ottov motor, pri katerem se gorivo umesša v zrak pred vstopom v valj v uplinjevalniku ali uplinjaču
- Diesel motor, pri katerem se neposredno vbrizgava gorivo neposredno v valj.

Možna je tudi kombinacija, da se del goriva meša pred vstopom v valj, kasneje pa se v valj vbrizga dodatno gorivo.

Zahteve za lastnost goriva so pri Ottovem in Dieslovem motorju zelo različne. Pri Ottovem motorju mora gorivo zaradi visokega oktanskega števila biti odporno proti samovžigu, kar je pri dieselskem motorju nasprotno.

Pri Otto motorju sproži vžig iskra na svečki, pri Diesel motorju pa samovžig goriva, vbrizganega v valj.
3.1.1 OTTOV MOTOR (MNZ)

Motor pretvarja z zgorevanjem goriva dobljeno toploto v mehansko energijo za pogon koles. Gorivo, po navadi zmes bencina in zraka, zgoreva v povsem zaprtilih valjih v notranjosti motorja.

Gibanje batov se spreminja v vrtenje in prenaša na ročično gred, ki s posredovanjem sklopke, menjalnika in diferenciala oddaja moč kolesom. Bat in ročično gred povezuje ojnica.

Ročična gred poganja tudi odmično gred, ki skrbi za odpiranje in zapiranje sesalnih in izpušnih ventilov vsakega valja.

Električni zaganjalnik daje moč, ki je potrebna za zagon motorja. Zobato kolesce zaganjalnika pri tem prime v ozobljeni venec na zunanjem robu vztrajnika, ki je pritrjen na koncu ročične gredi, in poţene vztrajnik in ročično gred v vrtenje. S tem se tudi ojnice in bati premikajo gor in dol.

Mazanje zmanjšuje drgnjenje med gibljivimi deli motorja in skrbi za dodatno hlajenje. Zaradi tega oljna črpalka med tekom motorja ves čas dovaja [olje] iz oljne kadi oz. karterja, ki je pod valji, k mazalnim mestom v motorju.
3.1.2 DIESEL MOTOR (MNZ)

Dieselski motor nima svečk, za gorivo pa uporablja plinsko olje. Vžig povzroči visoka temperatura, na katero se ogreje močno stisnjen zrak v valjih. Visoka kompresija namreč ustvari temperature, ki so višje od vžigalne temperature plinskega olja.

Plinsko olje ne pride v valj pomešano z zrakom, marveč ga pod visokim pritiskom vbrizgava v valj posebna šoba. Ob dotiku z vročim zrakom se plinsko olje vţge. Vsaka šoba vbrizga v valj natančno odmerjeno količino goriva. Plinsko vbrizganega goriva in s tem tudi moč motorja v določenem trenutku uravnava voznik s pedalom.

Prednosti dieselskega motorja so:

- boljši izkoristek (in s tem manjši stroški za gorivo),
- daljša življenjska doba in niţji stroški vzdrţevanja,
- visok navor že pri manjših hitrostih delovanja.

Pomanjkljivosti pa so:

- draţja izdelava,
- večja teţa,
- nekoliko glasnejši tek, zlasti prazni tek in tek po zagonu,
- slabši pospeški,
- večje emisije trdnih delcev.

3.1.3 WANKLOV MOTOR (MNZ)

V ohišju so nameščene tudi ena ali dve svečki in po ena sesalna ter izpušna odprtina, ki ju eno za drugo odpira vrteči se rotor. V vsakem delovnem prostoru poteka tako pri vsakem vrtljaju rotorja štiritaktni proces, ki ustreza štiritaktnega procesu običajnega batnega motorja: sesanje, kompresija, delo, izpuh. Ker so med...
rotorjem in ohišjem trije delovni prostori (komore), opravi motor pri vsakem vrtljaju motorja tri delovne takte.

Rotor je na treh vogalih (temenih) in na bokih, torej na vseh stičnih površinah z ohišjem, tako zatesnjen, da plini ne morejo iz ene delovne komore v drugo. Večina Wanklovih motorjev ima uplinjač, vendar obstajajo tudi taki z vbrizgavanjem goriva. Wanklov motor v glavnem hladi voda, rotor pa še dodatno zrak. Povsem zračno hlajenih rotacijskih motorjev v avtomobile ne vgrajujejo.

Slika 2: Wanklov motor v munchenskem muzeju

![Wanklov motor v munchenskem muzeju](https://www.wikipedia.org/wiki/Wanklov_motor)

3.2 VRSTE MNZ PO NAČINU TAKTOV

3.2.1 ŠTIRITAKTNÍ MOTOR

Vir: [www.wikipedia.org/wiki/Motor z notranjim zgorevanjem](www.wikipedia.org/wiki/Motor_z_notranjim_zgorevanjem)
2.takt: kompresija. Izpušni in sesalni ventil sta zaprta. Pri gibanju navzgor bat stiska (komprimira) zmes v zgorevalni prostor, zaradi toplote pri stiskanju se kapljice goriva povsem uplinijo.

Slika 4: Drugi delovni takt

Vir: www.wikipedia.org/wiki/Motor z notranjim zgorevanjem

Slika 5: Tretji delovni takt

Vir: www.wikipedia.org/wiki/Motor_z_notranjim_zgorevanjem

Slika 6: Četrti delovni takt

Vir: www.wikipedia.org/wiki/Motor z notranjim zgorevanjem
3.2.2 DVOTAKTNI MOTOR

1. takt

Dogajanje nad batom:

Dogajanje pod batom:

Na začetku takta se v podbatnem prostoru nahaja stisnjena mešanica, ki zaradi določenega nadtlaka v karterju odteka skozi odprt pretočni kanal v valj. Čez čas bat med svojim gibanjem navzgor pretečne kanale zapre in polnitev valja se konča, ko bat zapire pretočni kanal. Ko bat nadaljuje potovanje navzgor, v podbatnem prostoru nastaja podtlak, saj je karter hermetično zaprt. Ko se bat s svojim spodnjim delom dvigne nad sesalno odprtino in tako odpre sesalni kanal, začne v karterski prostor dotekati sveža zmes. Dvotaktni motor ima torej odprto izmenjavo plinov, kar pomeni, da pride do neizogibnega mešanja svežih in izpušnih plinov ter do izgube svežega plina, ker sta istočasno odprta izpušni in pretočni kanal.

Slika 7: Prvi takt

Vir: www.uni-mb.si/tehnika-old/dvotaktni bencinski.htm
2. takt

Dogajanje nad batom

Na začetku takta procesa je bat v zgornji mrtvi legi. Zgorevanje, ki se je začelo tik pred koncem prejšnjega takta, se nadaljuje. Zaradi zgorevanja se tlak na začetku takta še dodatno poveča in z vso silo potisne bat navzdol. Proti koncu takta se najprej odpre izpušni kanal, takoj zatem pa še pretočni kanal. Zgoreli dimni plini začno odtekati skozi izpušni kanal, hkrati pa skozi pretočni kanal doteka sveža mešanica.

Dogajanje pod batom

Že od konca prejšnjega takta v karterski prostor zaradi podtlaka v njem doteka sveža mešanca. Ta polnitev traja tako dolgo, da bat pri svoji poti navzdol zapre dovodno sesalno odprtino. V nadaljevanju začne bat na svoji poti proti spodnji mrtvi legi stiskati svežo mešanico v karterju (do tlaka okoli 1,2 do 1,7 bara). V karterju začne nastajati nadtlak. Proti koncu drugega takta se odpre pretočni kanal do nadbatnega prostora, po katerem začne iz karterja odtekati mešanica v nadbatni prostor.

Slika 8: Drugi takt

Vir: www.uni-mb.si/tehnika-old/dvotaktni_bencinski.html
3.2.3 ŠTIRITAKTNÍ MOTOR (WANKLOV)

1. takt:

Pri vrtenju v smeri urinega kazalca rotor odpre vstopni kanal, zmes goriva in zraka se vsesa v komoro A.

2. takt:

Prostornina komore A se poveča in vsesa še več zmesi. Hkrati se zmanjša prostornina komore B, katere zmes se pri doseženi največji gostoti vžge.

3. takt:

Komora A doseže največjo prostornino. Hkrati zgori (ekspandira) zmes v komori B, ki potisne bat v smeri puščice.

4. takt:

Pri zgorevanju nastali plini v prejšnjem taktu v komori C se pri tem iztisnejo skozi iztisni kanal.

* Slika 9: Štiritaktni (Wanklov motor)

Vir: d111.fnm.uni-mb.si/tehnika-old/vsebina/projekti/energetika/motorji_notranji.html
3.3 VRSTE MNZ GLEDE NA NAČIN HLAJENJA

Vodno hlajenje se uporablja pri motorjih večjih moči pri katerih je tudi konstrukcija drugačna. Blok in glava motorja imata dvojne stene, vmes pa teče voda, ki jo skozi hladilni prostor potiska vodna črpalka. Navadno se hladi tudi izpušni kolektor oz. ves izpušni sistem. Motorji večjih moči imajo vedno predvideno tudi hlajenje podmazovalnega olja, ki poteka v posebnem hladilniku olja. Pri vodnem hlajenju ločimo še odprt in zaprt sistem hlajenja.

Zračno hlajenje se uporablja pri manjših motorjih. Valj in glava sta opremljena z lamelastimi rebri, kar povečuje hladilne površine in s tem pospešuje odvajanje toplote. Da pa bi to odvajanje še izboljšali, so nekateri motorji opremljeni z ventilatorjem, ki usmerja gibanje zraka okoli valja in glave motorja.

Stene motornega bloka imajo običajno debelino med 4 in 8 mm. Zaradi zelo komplicirane oblike se te stene ne strjujejo enakomerno, zato ostanejo v njih po litju znatne notranje napetosti, ki se ne porazgubijo do konca življenjske dobe motorja. Zato je zelo nevarno, če je blok podvržen hitrim spremembam temperature. To je posebej nevarno, če dolijemo hladno vodo v pregret motor, saj pri tem rade nastanejo nevarne razpoke.
3.4 VRSTE MNZ GLEDE NA GIBANJE BATA

➢ Motorji s premočrtnim gibanjem bata,

![Slika 10: Premočrtno gibanje bata](image1)

➢ Motorji s krožnim gibanjem bata (npr. Wanklov motor).

![Slika 11: Krožno gibanje bata](image2)
3.5 VRSTE MNZ GLEDE NA RAZPORED VALJEV

- Vrstni motorji

![Diagram of straight motor](image1)

Slika 12: Vrstni motor

- Ležeči (bokser) motorji

![Diagram of flat engine](image2)

Slika 13: Bokser motor
Motorji, ki imajo valje v obliki črke »V«

Slika 14: Motor v obliki črke V

3.6 VRSTE MNZ GLEDE MAZANJA

Pri manjših dvotaktnih Otto motorjih izkoriščamo princip delovanja tudi za mazanje motorja. Gorivu dodajamo olje, ki na poti v zgorevalni prostor maže ves karterski mehanizem, stene valja, bat in batne obročke, nato pa zgori skupaj s pogonsko zmesjo. Dotolj je, da pripravimo pravilno mešanico bencina in olja (1,2 ali 3 %), kot jo predpiše proizvajalec motorja.

V tem primeru smo lahko prepričani, da se motor pravilno podmazuje. Večji odstotek olja v bencinu, kot ga predpiše proizvajalec, motorju ne koristi. Prebogata mešanica zamasti svečke (motor težko vžge), izpušni plini so sivo obarvani zaradi nepopolnega izgorevanja zmesi (onesnažujemo okolje).

Tlačno mazanje (štiritaktni motorji). Drugi večji motorji, tako dizelski kot bencinski, se največkrat mažejo s posebno zobniško črpalko. Ta črpa olje iz karterja, ki služi kot rezervoar, in ga tlači preko posebnih cevčic in izvrtin v samem mehanizmu na posamezna mazalna mesta. Pritisk olja v mazalnem sistemu se navadno giblje med 1–4 bari, odvisno od obremenitve oz. obratov motorja in temperature olja v sistemu.
3.7 ANALIZA MOČI IN NAVORA MNZ

Za analizo moči in navora motorja smo izbrali dva motorja istega proizvajalca (Renault Megane), in sicer 81KW bencinski 1,6 16V in 96KW DCI 1,9.

Moč in navor motorja smo analizirali s pomočjo diagrama, kjer lahko izberemo naslednje rezultate glede moči in navora za oba motorja.

Za bencinski motor je razvidno iz diagrama moči, da največjo moč (81KW) doseže motor pri 6200/min, navor(Nm) pa med 4000 in 4600/min.

Za dieselski motor je razvidno iz diagrama moči, da največjo moč (96KW) doseže motor pri 3600/min, navor(Nm) pa med 1700 in 2400/min.

Z analizo rezultatov smo ugotovili, da imajo dieselski motorji boljši izkoristek od bencinskih in manjšo porabo goriva, posledično pa tudi manjše onesnaževanje okolja. Ker motorji obratujejo z nižjimi obrati, imajo tudi daljše življenjsko dobo od bencinskih, gledano z ekonomske plati pa so bolj ekonomični.

1. Diagram moči 4-taktnega bencinskega motorja (1,6 16 V Megane)
2. Diagram navora 4 taktnega bencinskega motorja (1,6 16 V Megane)

![Diagram navora](image1)

Območje max navora motorja: 4000 - 4600/min

3. Diagram moči 4 taktnega dieselskega motorja (1,9 dci Megane)

![Diagram moči](image2)

Max moč motorja: 96 KW

Vrtlaji: 3600/min

Vrtlaji motorja v 1000/min
4. Diagram navora 4-taktnega dizelskega motorja (1,9 dci Megane)

- Območje max navora motorja: 1700 – 2400/min

Diagram prikazuje navor motorja v funkciji vrtiljakov v 1000/min.
4 POGONSKA GORIVA MOTORJEV (MNZ)

4.1 Bencin

Pomembnejše fizikalno-kemijske lastnosti motornih bencinov so:

- Oktansko število (RON, MON)
- Vsebnost svinec
- Destilacijske lastnosti
- Vsebnost žvepla
- Vsebnost benzena
- Gostota, barva
- Parni tlak in indeks parne zapore
Tabela1: Lastnosti bencinov

<table>
<thead>
<tr>
<th>Lastnosti</th>
<th>NMB 95</th>
<th>NMB 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovenski standard</td>
<td>SIST EN 228</td>
<td>SIST EN 228</td>
</tr>
<tr>
<td>Drugo ime</td>
<td>Eurosuper</td>
<td>Super plus</td>
</tr>
<tr>
<td>RON in MON</td>
<td>Min.95okt./min.85okt.</td>
<td>Min.98okt./min.88okt.</td>
</tr>
<tr>
<td>Barva</td>
<td>Neobarvan</td>
<td>Neobarvan</td>
</tr>
<tr>
<td>Svinec</td>
<td>Max 0,013g/l</td>
<td>Max 0,013g/l</td>
</tr>
<tr>
<td>Benzen</td>
<td>Max 5,0%V/V</td>
<td>Max 5,0%V/V</td>
</tr>
<tr>
<td>Uporaba</td>
<td>Vsa vozila, ki zahtevajo uporabo bencinov z RON ≥ 95 z katalizatorjem ali brez.</td>
<td>Vsa vozila, ki zahtevajo uporabo bencinov z RON ≥ 98 z katalizatorjem ali brez.</td>
</tr>
</tbody>
</table>

Vir: Biosistemska inzenirstvo/ucnagradiva/f-Goriva. pdf

4.2 Dizel

Dizelsko gorivo je eden od proizvodov iz nafte, ki vsebuje ogljikovodike z okrog 16 ogljikovih atomov. Uporablja se v diesel motorjih, ki precej onesnaţujejo okolje. Rudolf Diesel je sprva uporabljal za svoje motorje rastlinsko olje, vendar se je cenovno bolje obnesel diesel, ki ga proizvajamo iz nafte. Toda ker se časi spreminjajo, bomo tudi mi začeli uporabljat gorivo, kot ga je uporabljal Rudolf Diesel takrat.

Pomembnejše fizikalno-kemijske lastnosti dieselskega goriva so:

- Cetansko število
- Cetanski indeks
- Vsebnost ţvepla
- Gostota, barva
- Filtrirnost(CFPP), motnišče, strdišče
- Temperatura vţiga
- Vsebnost vode in mehanskih primesi
- Mazalna sposobnost
Tabela 2: Lastnosti dieslov

<table>
<thead>
<tr>
<th>Lastnosti</th>
<th>DIESELSKO GORIVO</th>
<th>KURILNO OLJE-KO EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovenski standard</td>
<td>SIST EN 590</td>
<td>SIST 1011</td>
</tr>
<tr>
<td>Drugo ime</td>
<td>Plinsko olje, D-1, D-2</td>
<td>Kurilno olje za gospodinjstvo</td>
</tr>
<tr>
<td>Cetansko število/indeks</td>
<td>Min.49/min.46</td>
<td>Viskoznost pri 20 °C: 2,5 – 6mm²/s</td>
</tr>
<tr>
<td>Barva</td>
<td>Neobarvan</td>
<td>Obarvano rdeče</td>
</tr>
<tr>
<td>Žveplo</td>
<td>Max 0,05%m/m</td>
<td>Max 0,2 %m/m</td>
</tr>
<tr>
<td>Voda</td>
<td>Max 200 mg/kg</td>
<td>Max 5,0 %V/V</td>
</tr>
<tr>
<td>Temp. vžiga</td>
<td>74 °C</td>
<td>Strdišče: max. – 9°C</td>
</tr>
<tr>
<td>Uporaba</td>
<td>Vsa vozila, ki zahtevajo uporabo dieselskega goriva z vgrajenim oksidacijskim katalizatorjem ali brez njega.</td>
<td>V gospodinjstvu, predvsem za ogrevanje bivalnih prostorov (gorilci peči za centralno ogrevanje).</td>
</tr>
</tbody>
</table>

Vir: Biosistemsko inzenirstvo/ucnagradiva/f-Goriva.pdf

4.3 Bio dizel

Biodizel je metilni ester maščobnih kislin, ki nastaja pri estrifikaciji trigliceridov rastlinskih olj z metanolom. Zaradi zelo podobnih lastnosti se lahko uporablja kot nadomestilo ali v zmesi s klasičnim dieselskim gorivom. Bio diesel je gorivo iz obnovljivih virov, kot so rastlinska olja in živalske maščobe, in se pridobiva iz surovega ali že uporabljene rastlinskega olja ali živalskih maščob. Najpomembnejša surovina za pridobivanje bio diesla v evropskih državah je oljna repica s 83 odstotki, sledi sončnica s 13 odstotki. V ZDA se kot surovina uporablja soja. Prednost olja je za 55 odstotkov manjša emisija CO in 40 odstotkov nižje emisije nezgorljivih ogljikovodikov. Ni emisij SO₂ v okolje, skoraj ni ţvepla ter ni škodljivih aromatskih spojin kot benzen in toluen, manjša je tudi emisija CO₂, poleg tega pa je tudi gorivo neobdavčeno.

Pomembnejše fizikalno-kemijske lastnosti bio dieselskega goriva so:

- Cetansko število
Vsebnost žvepla
Gostota, barva
Filtrirnost (CFPP), motnišče, strdišče
Temperatura vžiga
Vsebnost vode in mehanskih primesi
Mazalna sposobnost

Tabela 3: Lastnosti bio dizlov

<table>
<thead>
<tr>
<th>Lastnosti</th>
<th>BIO DIESELSKO GORIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovenski standard</td>
<td>SIST EN 14214</td>
</tr>
<tr>
<td>Drugo ime</td>
<td>Bio diesel</td>
</tr>
<tr>
<td>Cetansko število</td>
<td>54</td>
</tr>
<tr>
<td>Barva</td>
<td>Svetlo rumena</td>
</tr>
<tr>
<td>Žveplo</td>
<td>0,012 %m/m</td>
</tr>
<tr>
<td>Temp. vžiga</td>
<td>179 °C</td>
</tr>
<tr>
<td>Uporaba</td>
<td>Vsa vozila, ki zahtevajo uporabo dizelskega goriva z vgrajenim oksidacijskim katalizatorjem ali brez njega.</td>
</tr>
</tbody>
</table>

Vir: Biosistemske inzenirstvo/ucnagradiva/f-Goriva. pdf
IZPUŠNI PLINI MNZ

Izpušni plini MNZ imajo negativen vpliv na okolje in prav tako na zdravje ljudi. Predvsem dušikovi oksidi in saje predstavljajo pomembno grožnjo človekovemu zdravju. NOx v atmosferi povzročajo nastanek kislega dežja, ki katastrofalno vpliva na gozdove in objekte na prostem. Iz NOx nastaja amonijev nitrat (NH4NO3), ki dokazano povzroča nastanek različnih bolezni bolezni. NOx v atmosferi povzročita nastanek različnih bolezni.

NOx v atmosferi povzroča nastanek kislega dežja, ki katastrofalno vpliva na gozdove in objekte na prostem. Iz NOx nastaja amonijev nitrat (NH4NO3), ki dokazano povzroča nastanek različnih bolezni.

Izpušni plini MNZ imajo negativen vpliv na okolje in prav tako na zdravje ljudi. Predvsem dušikovi oksidi in saje predstavljajo pomembno grožnjo človekovemu zdravju. NOx v atmosferi povzročajo nastanek kislega dežja, ki katastrofalno vpliva na gozdove in objekte na prostem. Iz NOx nastaja amonijev nitrat (NH4NO3), ki dokazano povzroča nastanek različnih bolezni. NOx v atmosferi povzročita nastanek različnih bolezni.

V dizelskih motorjih nastaja mnogo več NOx in PM kot v bencinskih motorjih. Najnovejše študije kažejo, da vdihavanje zraka, onesnaženega z izpušnimi plini iz dizelskih motorjev bistveno vpliva na možnosti srčnega napada ali kapi.

Motorji na dizelski pogon imajo marsikateri pozitiven vpliv na okolje, vendar kot kažejo zadnje znanstvene raziskave, tudi veliko negativnih učinkov na zdravje ljudi.

Odstranjevanje nevarnih snovi iz izpušnih plinov se opravlja:

- s katalizatorjem (Ottov motor),
- SCR-tehnologijo (Dieslov motor),
- EGR-tehnologijo.
5.1 KATALIZATOR

Je naprava za razstrupljanje (predvsem avtomobilskih izpušnih plinov), ki nastanejo pri izgorevanju ogljikovodikov v MNZ. V izpušno cev je vstavljena posoda s keramičnim ali kovinskim satovjem z zelo veliko aktivno površino, prevlečena s tanko plastjo plemenite kovine (platine, rodija in paradija). Kovinska plast se med delovanjem motorja segreje na več kot 300 °C. Izpušni plini se pri prehodu zadevajo ob vročo kovino in spremenijo v kemično stabilne, nestrupene spojine.

Današnji katalizatorji imajo pred oksidacijsko stopnjo nameščen še redukcijski katalizator, v njem so NO (dušikovi oksidi) reagirali s CO, pri tem pa so nastali: voda, ogljikov dioksid (CO₂) in dušik. Pri sodobnih redukcijsko-oksidacijskih katalizatorjih potekata oba procesa v isti posodi. Takšen katalizator pravilno deluje le pri izpušnih plinih z razmerjem med gorivom in zrakom (na en del goriva 14,7 % zraka). V izpušni sistem je vgrajena kisikova sonda(lamba), ki zaznava količino vbrizganega goriva in zajetega zraka.

S katalizatorjem zmanjšamo količino strupenih snovi za 95 %. V večini razvitrih držav morajo imeti vsa nova vozila vgrajen katalizator (Ottov motor).

Delovanje katalizatorja preizkušajo s posebnimi preizkusi, med te sodijo vroč in hlajen zagon, mestna vožnja in vožnja po avtocesti pri različnih hitrostih.

Ključnega pomena za pravilno delovanje katalizatorja so: motor, sistem vziga, sistem goriva …, ki morajo na vozilu delovati brezhibno, znotraj proizvajalčevih dovoljenih vrednosti, in to ves čas delovanja vozila.
Slika 15: Katalizator v preseku

Vir: http://www.auspuh-novak.com/program 3.htm
5.2 **SCR-TEHNOLOGIJA**

AdBlue je sredstvo, ki omogoča selektivno katalitično redukcijo oziroma sredstvo, na katerem temelji SCR tehnologija: AdBlue se kontrolirano vbrizgava v vroče izpušne pline, preden le-ti vstopijo v SCR katalizator. V tem se nato zgodi kemična reakcija med dušikovimi oksidi in amonijakom, ki se sprošča iz AdBlue. Končni rezultat kemične reakcije je, da se okolju nevarni dušikovi oksidi skoraj popolnoma pretvorijo v atmosferski dušik in vodno paro. Tovornjaki s SCR katalizatorji zaradi boljšega zgorevanja (višji tlak in temperatura v zgorevalnem prostoru) porabijo do 5 % manj goriva in proizvedejo občutno manj saj. Ta tehnika omogoča doseganje mejnih vredností, ki jih določata Euro 4 (3,5 g NOx/kWh) in Euro 5 (2,0 g NOx/kWh). S to tehnologijo bo v prihodnosti moč dosegati še nižje mejne vrednosti.

AdBlue se uporablja samo v Euro 4 in Euro 5 tovornjakih, ki so opremljeni s SCR katalizatorjem. Natoči se ga v posebno, od dizelskega goriva ločeno posodo. Nikakor se ga ne sme natočiti v posodo za dizelsko gorivo, saj v tem primeru lahko pride do težkih poškodb motorja. Prav tako ne sme dizelsko gorivo priti v posodo za shranjevanje AdBlue. Da bi se zagotovo izognili kakršnim koli poškodbam motorja, smo poskrbeli, da imajo cevi pištol za polnjenje AdBlue in odprtine v posodah za shranjevanje AdBlue premer samo 19 mm. Pištole za polnjenje dizelskega goriva so bistveno večje in se jih ne da vstaviti v odprtino posode za shranjevanje AdBlue.

Pri zgorevanju v dizelskih motorjih nastajajo dušikovvi oksidi, ki jih uvrščamo med toplogredne pline in so soodgovorni za nastajanje kislega dežja. SCR tehnologija je proizvajalcem tovornjakov dovolila povišati tlak in temperaturo v motorjih in s tem doseči boljše zgorevanje. Pri boljšem zgorevanju v valjih nastaja na eni strani občutno manj saj in na drugi strani več dušikovih oksidov, ki pa jih AdBlue skoraj v celoti nevtralizira.
Slika 16: Shema delovanja SCR tehnologije
Vir: www.petrol.ba/index.php?sv
5.3 EGR-TEHNOLOGIJA

Pri EGR se del izpušnih plinov preko hladilnika vrača nazaj v izgorevalno komoro, kje se odstranjuje NOx.

Slika 17: Delovanje ERG tehnologije
Pri sodobnih dizelskih motorjih so emisije saj občutno manjše kot pri starejših agregatih. Filter za trdne delce zagotavlja bistveno manjše emisije trdnih delcev. Filter zadrži celo najbolj drobne delce, ki nastanejo pri zgorevanju dizelskega goriva.

Slika 18: Filter trdnih delcev

Najnovejša generacija filtra za trdne delce deluje brez aditivov in zato ne zahteva vzdrževanja. Njegova življenjska doba ustreza življenjski dobi vozila in lastniku prihrani stroške menjave filtra.

Slika 19: Filter trdnih delcev
Filter za trdne delce ima porozno keramično jedro in prevleko iz žlahtne kovine. Ko saje prehajajo skozi filter, jih porozni material zaustavi in zadrži v filtru, medtem ko plini nemoteno potujejo naprej. Da bi bilo trajno zagotovljeno brezhibno delovanje filtra, je delce, ki se naložijo v filtru, potrebno odstraniti.

Slika 20: Filter trdnih delcev

Saje, ki se naložijo v filtru, sistem odstrani s postopkom, imenovanim regeneracija. Pri pasivni regeneraciji se saje v ogljikov dioksid pretvarjajo počasi in neprekinjeno, pri čemer mora temperatura izpušnih plinov znašati več kot 630 °C. Ta postopek se npr. izvaja med vožnjo po avtocesti. Aktivna regeneracija je potrebna le v primeru daljše vožnje z majhno obremenitvijo, npr. v mestnem prometu.

Pri aktivni regeneraciji se temperatura izpušnih plinov poveča zaradi spremembe specifičnih parametrov motorja. Sistem poskrbi, da saje v filtru zgorijo na vsakih 1.000–1.200 km. Ker je filter nameščen blizu motorja, temperatura izpušnih plinov zadostuje za pretvarjanje saj med delovanjem motorja. Rezultat sta manjša obremenitev komponent in velika učinkovitost filtra.
6 ZAKONODAJA IN EURO STANDARD

6.1 DIREKTIVA EU

V naslednjih nekaj mesecih je bilo po poglobljenem posvetovanju z interesnimi skupinami ugotovljeno, da napredek ne dosega pričakovan in da cilj 120 g CO\textsubscript{2}/km do leta 2012 ne bo dosežen. Komisija je zato decembra 2007 predlagala novo strategijo, ukrepe in zakonodajo. Cilj predlagane nove uredbe je dosežeti povprečne emisije CO\textsubscript{2} za novega voznega parka v Skupnosti na 130 g CO\textsubscript{2}/km do leta 2012 in s tem zagotoviti ustrezno delovanje proizvajalcev trga za osebne avtomobile. Z dopolnilnimi ukrepi, kot sta večja učinkovitost (npr. pnevmatik in klimatskih naprav) ter postopno zmanjšanje vsebnosti ogljika v pogonskih gorivih (npr. z večjo uporabo bio goriv) bi se emisije zmanjšale za dodatnih 10 g/km, skupne emisije pa na 120 g/km. Novi ukrepi poleg tega predvidevajo podporo raziskavam za dodatno zmanjševanje emisij novih avtomobilov na povprečno 95 g CO\textsubscript{2}/km do leta 2020 ter promoviranje vozil z dobrim izkoristkom goriva, denimo z učinkovitejšim označevanjem avtomobilov.
Evropska direktiva, ki narekuje proizvajalcem tovornih vozil izdelavo bolj čistih, okolju prijaznih vozil (MNZ), je od leta 1990 izdala naslednje standarde:

- LETO 1990 STANDARD EURO-0
- LETO 1992/93 STANDARD EURO-1
- LETO 1995/96 STANDARD EURO-2
- LETO 2000/01 STANDARD EURO-3
- LETO 2005/06 STANDARD EURO-4
- LETO 2008/09 STANDARD EURO-5
- LETO 2012/14 STANDARD EURO-6

Standard EURO-4 zahteva od vseh vozil, registriranih v EU, upoštevanje strogih mejnih vrednosti izpušnih plinov. V primerjavi z EURO-0 v začetku 90. let se mora izpust NOx zmanjšati za 86 odstotkov. Delo trdih delcev se mora v primerjavi z EURO-0 od oktobra 2006 dalje zmanjšati za 98 odstotkov, poleg tega se morata drastično znižati deleža HC in CO v izpušnih plinih vozil.

Graf 1: Normativ standarda EURO-0 DO EURO-5 zmanjšanja NOx od leta 1990 do 2008

Graf prikazuje, da je leta 1990 normativ vrednosti NOx znašal 14,4 g/kwh pri standardu motorja EURO-0. Največje zmanjšanje NOx je bilo v letu 1992/93 pri prehodu na standard na EURO-1, in sicer za 50 %, saj je dovoljena vrednost NOx
Romeo Cah: Motorji z notranjim izgorevanjem

znašala 7,8 g/kwh. Za leto 2008/09 je pri motorju EURO-5 normativ standarda NOx predviden v vrednosti 2 g/kwh.

Graf 2: Primer dosežene vrednosti NOx vozil Mercedes od leta 1990 do 2008

Graf št. 2 prikazuje, da proizvajalec vozil znamke Mercedes-Benz leta 1990 ni dosegel normativa, saj je bila vrednost NOx 15,8 g/kwh. V letih 1992/93 pa se je pri motorju EURO-1 vrednost znižala za 44 odstotkov in je padla na vrednost 9,0 g/kwh. Pri prehodu na EURO-2 se je znižala za 23 odstotkov, za 30 odstotkov pri prehodu na EURO-3 v letih 2000/01, nato za 30 odstotkov pri prehodu na EURO-4 in za 43 odstotkov pri prehodu na EURO-5, kjer znaša vrednost 2,0 g/kwh in je enaka normativu standarda NOx.
Graf št. 3 prikazuje, da je normativ vrednosti CO znašal leta 1990 pri motorju EURO-0 11,6 g/kwh in se je v letih 1992/93 znižal za 70 odstotkov, tako da je dosegel vrednost 3,8 g/kwh pri prehodu na EURO-1. Nato je sledilo znižanje za 20 odstotkov pri prehodu na EURO-2, ter za 30 odstotkov v letih 2000/2001, in nato še za 28 odstotkov pri prehodu na EURO-4 in EURO-5, kjer znaša vrednost normativa CO 1,5 g/kwh.
PRIHODNOST MNZ

Tudi najbolj zagriženi ekološki bojevnik se bodo morali še kar nekaj časa voziti z avtomobili, ki jih poganja motor z notranjim zgorevanjem. Tudi zato se avtomobilski izdelovalci in inženirji trudijo razviti kar najbolj čist in učinkovit motor – bencinski ali dieselski. Pri bencinskih motorjih so z razvojem neposrednega vbrizga (in ponovno uveljavitvijo turbinskih polnilnikov) temeljito izboljšali učinkovitost, pri dizelskih motorjih so z učinkovitejšimi katalizatorji in filtri zelo očistili izpuh. Zbliževanje lastnosti obeh motorjev – predvsem izboljšanje tistih negativnih – je zato glavni cilj tistih, ki se ukvarjajo z razvojem motorjev. Najbolj odločne korake v tej smeri so naredili pri Volkswagnu s konceptom CCS in pri Mercedesu z motorjem diesotto; pri obeh motornih prototipih je meja med obema vrstama motorjev z notranjim zgorevanjem (skoraj) že zabrisana.

7.1 CCS – KOMBINIRAN SISTEM ZGOREVANJA

Sistem CCS (Combined Combustion System) združuje prednosti in zmanjšuje pomanjkljivosti bencinskega in dizelskega motorja. Srce sistema je prilagojen 2-litrski TDI motor s po tremi ventili na valj, pri katerem pa je vbrizg goriva in nastanek eksplozivne mešanice kombinacija načel delovanja bencinskega in dieselskega motorja. Faza vbrizga goriva se pri CCS motorju začne že takrat, ko bat posameznega valja potuje proti svoji zgornji točki (podobno kot pri bencinskih motorjih z neposrednim vbrizgom) – za natančno in večkratno odmerjanje količine goriva skrbijo vbrizgalne šobe sistema skupnega voda. Ko bat potuje naprej proti svoji zgornji točki, se homogena mešanica goriva in zraka stisne ter segreje (gorivo se uplini). Kmalu po zgornji mrtvi točki bata pa se mešanica tudi sama vžge – brez pomoči zunanjih iskr. Teoretično se mešanica vžge v celotnem zgorevalnem prostoru naenkrat in prav takšen homogen in hkraten vžig prinese manjšo porabo goriva in manj izpusta škodljivih plinov.

Drug pomemben sestavni element CCS motorja je visoka stopnja uporabe povratnih izpušnih plinov – izpušni plini, ki jih sistem dovede nazaj v zgorevalni prostor, skrbijo, da v zgorevalnem prostoru ni previsoke temperature in vrločih posamičnih točk, in da do vžiga ne pride prekmalu. Predčasni vžig je namreč kriv, da je v izpustu preveč dušikovih oksidov (NOx). Druga pomembna posledica homogenega vžiga je odprava saj, ki nastanejo zaradi prebogate mešanice v zgorevalnem prostoru.

Že prvi delujoči motorni prototip privarčuje 5 odstotkov goriva v primerjavi z enako velikim in zmogljivim TDI motorjem, hkrati pa je raven izpusta dušikovih oksidov in sajastih delcev bistveno manjša. Vse skupaj je pri CCS motorju možno le z uporabo posebnih sintetičnih goriv, kot sta synfuel ali sunfuel – synfuel pridobivajo iz

Romeo Cah: Motorji z notranjim zgorevanjem stran 38 od 46
zemeljskega plina, sunfuel pa iz biomase. Nobeno od teh goriv namreč ne vsebuje žvepla in aromatov, hkrati pa imata drugačni temperaturi uplinjenja in drugačni cetanski števili. CCS motor lahko deluje tudi na klasično dizelsko gorivo, a takrat njegove prednosti ne pridejo do izraza.

Motor bo lahko zrel za serijsko izdelavo do leta 2015 – ob predpostavki, da bodo takrat voznikom na voljo tudi nova goriva.

7.2 DIESOTTO – DIZEL BENCINSKI MOTOR

Prototip motorja s pomenljivim imenom diesotto (dizel + otto) je namreč v osnovi bencinski motor, ki je gospodaren kot dizelski, a brez značilnih dizelskih pomanjkljivosti. Motor prototip je 1,8-litrski štirivaljnik s turbinskim polnilnikom, ki pri zagonu in pri polnem plinu deluje enako kot klasičen bencinski motor; mešanico v zgorevalnem prostoru vţge vţigalna svečka. Ko je motor le delno obremenjen, se mešanica goriva in zraka v zgorevalnem prostoru vţge sama od sebe (nadzorovan samovţig) kot pri dizelskem motorju. Zaradi homogenega zgorevanja je izpust dušikovih oksidov zelo majhen.

Zdruţitev dveh načel delovanja v enem motorju je mogoča le ob spremenljivi kompresiji posameznega valja (samovţig je mogoč le ob višjih tlakih). Diesotto motor to doseţe ob pomoči prilagajanja dolţine giba batov.

Zgolj inovativen princip delovanja ni dovolj za obljubljeno izboljšano učinkovitost; motor je opremljen tudi z drugimi sodobnimi tehnologijami, kot so dvojni turbinski polnilnik, neposredni vbrizg goriva in prilagodljivo krmiljenje ventilov. Dodaten prihranek pri porabi goriva predstavlja hibridni modul z integriranim zaganjačem oz. generatorjem – ta sluţi predvsem kot pomoč pri stop – go voţnji, ko motor pri stojecem avtomobilu sam ugasne in se nato znova zaţene.

Podatki, ki jih obljubljajo za ta motor, so več kot le obetavni: 1,8-litrski štirivaljnik zmore 175 kW in ima 400 Nm navora, porabi pa v povprečju manj kot 6 l bencina na 100 km. Še ena prednost: diesotto motor za delovanje uporablja obiţajen neosvinčen bencin.
Slika 21: Prototip Diesotto štiritaktnega motorja
Vir: Motorevija.si/13.a
8 ZAKLJUČEK

Lahko sklepamo, da se MNZ v boju za obstanek bojuje z novimi idejami, ki brez izjem ponujajo večjo moč, ugodnejši potek navora in seveda manjšo porabo goriva. Vsem novostim je skupna dodana komplikacija v konstrukciji, ki je glede na izvedbo bolj ali manj poudarjena, hkrati pa poskušajo biti rešitve na pogled čim bolj klasične, saj imajo le tako nekaj možnosti za prodor.

Z drugimi besedami lahko rečemo, da je danes že 'prepozno' za uvedbo drugačne konstrukcije motorja, kot smo je že navajeni, zato imajo le malo možnosti za uveljavitev na trgu.

Ko govorimo o prihodnosti česarkoli, v našem primeru pa seveda motorjev, je zanesljivost napovedi večja za krajše obdobje in manj zanesljiva za daljše obdobje. S tega stališča je zanimiva zgodovina preteklih in sedanjih dogodkov, ker lahko na osnovi tega bolj zanesljivo predvidimo nadaljnje dogodke v razvoju motorjev.

Če povzamemo 10-letno analizo patentov evropskega patentnega urada, si lahko prikažemo dogajanje v avtomobilski industriji, kdo so glavni akterji in na katerem področju. Znova je treba spomniti, da je osnovna ideja patentov ekonomija ali manjša poraba goriva in manjše onesnaževanje z izpusti strupenih plinov, zato jih največ obravnavamo izboljšave:

- neposrednega vbrizgavanja goriva,
- hibridne tehnologije,
- nadtlačnega polnjenja,
- krmiljenja kotov odpiranja ventilov,
- neposredno vbrizgavanje in krmiljenje kotov ventilov,
- spremenljivo prostorninsko razmerje,
- strategija vbrizgavanja,
- alternativna goriva, plinasta goriva, dvo- ali večgorivni motorji,
- zmanjšanje trenja, obvladovanje toplote, mehanska odpornost,
- hibridi,
- vračanje izpušnih plinov.

Tako vsi ti koncepti obljubljajo med 20 do 30 odstotkov manjšo porabo goriva in posledično tudi manjši izpust CO2. Moč teh motorjev s primerljivimi konvencionalnimi je še enkrat večja ali pa enaka kot pri motorjih s še enkrat večjo prostornino.

Le redki izumi se lotevajo neposrednega vplivania na dogajanje v valju, kot so homogen vžig, laserski vžig, plazemski vžig, oblikovanje zgorevalnega prostora …
V celoti gledano nobena od teh poti ne omogoča bistvenega izboljšanja delovanja motorja, kot ga želimo, so čim bolj preprosta konstrukcija spreminjanja prostorninskega razmerja in krmiljenja ventilov z minimalnimi mehanskimi izgubami, čim večji toplotni učinek, doseganje visokih tlakov, majhne toplotne izgube in čim boljše vodenje ter spremljanje procesa v valju, na kar večina izumiteljev 'pozablja', ker je to zanje najtrši oreh.

Z nekaj besedami lahko povzamemo, da se bomo še kar nekaj časa vozili s stroji, ki ropotajo, le počasi bomo menjali bencin za elektriko; vmes bo še nastopala kombinacija obeh pogonov, kar pa bo trajalo kar nekaj časa, razen če nas seveda kaj ne preseneti – če bi se morali odločiti, ali se voziti ali živeti.
LITERATURA IN VIRI

Knjige

Poglavje v knjigi

URL-naslov spletnih strani in datum dostopnosti:

- http://d111.fnm.unimib.si/tehnika-old/vsebina/projekti/energetika/stiritaktni_motorji.html, dostopno: 3. 2. 2011
- http://wapedia.mobi/sl/Motor znotranjim zgorevanjem, dostopno: 5. 2. 2011
PRILOGE

Priloga 1: Diagram moči 4-taktnega bencinskega motorja (1,6 16V Megane)

Priloga 2: Diagram navora 4-taktnega bencinskega motorja (1,6 16V Megane)

Priloga 3: Diagram moči 4-taktnega dizelskega motorja (1,9 dci Megane)

Priloga 4: Diagram navora 4-taktnega dizelskega motorja (1,9 dci Megane)

Priloga 5: Graf 1: Normativ standarda EURO-0 DO EURO-5 zmanjšanja NOx od leta 1990 do 2008

Priloga 6: Graf 2: Primer dosežene vrednosti NOx vozil Mercedes od leta 1990 do 2008

➢ http://docs.google.com/viewer?a=v&q=cache:TLD40YmDI7sJ: peterkamer.webs.com/motor.pdf+goriva+za+motorje+z+notranjim+izgorevanjem&hl=sl&gl=si&pid=bl &srcid=ADGEESjT_5b4hm5a-gZeFM4tGWnw6rA0JwGxnmPvSbMDKkOziGmn1xoVRWcGY1C0fWeb51S7sKdFdBtST9ox77y6JwOeOre2EKYCF6e5i8deAP4XbL9lxnmzPgrOrOiNRqjcdW3jrz &sig=AHIEtbQl3EtQ8vTVoR8qxFYEqRg-6W5YeA, dostopno: 23. 2. 2011
KAZALO SLIK

Slika 1: Štiritaktni motor osebnega vozila
Slika 2: Wanklov motor v munchenskem muzeju
Slika 3: Prvi delovni takt (štiritaktni motor)
Slika 4: Drugi delovni takt (štiritaktni motor)
Slika 5: Tretji delovni takt (štiritaktni motor)
Slika 6: Četrti delovni takt (štiritaktni motor)
Slika 7: Prvi takt (dvotaktni motor)
Slika 8: Drugi takt (dvotaktni motor)
Slika 9: Štiritaktni (a, b, c)
Slika 10: Premočrtno gibanje bata
Slika 11: Krožno gibanje bata
Slika 12: Vrstni motor
Slika 13: Bokser motor
Slika 14: Motor v obliki črke V
Slika 15: Katalizator v preseku
Slika 16: Shema delovanja SCR tehnologije
Slika 17: Delovanje ERG tehnologije
Slika 18: Filter trdnih delcev
Slika 19: Filter trdnih delcev
Slika 20: Filter trdnih delcev
Slika 21: Prototip Diesotto štiritaktnega motorja

KAZALO TABEL

Tabela 1: Lastnosti bencinov
Tabela 2: Lastnosti dizlov
Tabela 3: Lastnosti bio dizlov

POJMOVNIK

AdBlue: je sredstvo, ki omogoča selektivno katalitično redukcijo oziroma sredstvo, na katerem temelji SCR tehnologija.
Katalizator: Je naprava za razstrujanje (predvsem avtomobilskih izpušnih plinov), ki nastanejo pri izgorevanju ogljikovodikov v MNZ.
KRATICE IN AKRONIMI

MNZ: Motorji z notranjim izgorevanjem
ZMT: Zgornja mrtva lega(bat)
SML: Spodnja mrtva lega(bat)
CO₂: Ogljikov dioksid
C: Ogljik
NH₄NO₃: Amonijev nitrat
O₃: Ozon
NOₓ: Dušikovi oksidi
CCS: Kombiniran način izgorevanja
ERG: Povratno kroženje izpušnih plinov
SCR: Selektivna katalitična redukcija
TDI: Turbo dizel
PM: Trdni delci